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A MULTIBLOCK NAVIER-STOKES ALGORITHM USING 
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SUMMARY 

A new multiblock pressure-based finite element algorithm has been developed. This methodology implements 
quadratic interpolation for both the elemental velocity and pressure fields. A direct streamline upwinding scheme 
previously developed by the authors is used to model the non-linear inertia effects. Details of the algorithm and its 
multiblock foundation are provided along with validating test cases. The results presented clearly demonstrate the 
accuracy of this new approach and the differences in the pressure field for an element using quadratic versus the 
traditional bi linear approximation of the pressure field. 
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1. INTRODUCTION 

Computational fluid dynamics (CFD) algorithms often challenge the CPU/memory limitations of even 
the most capable supercomputers existing today. The large problem size commonly associated with this 
type of analysis is principally attributed to the accuracy of the algorithm, the physics of the flow being 
modelled and the complexity of the flow path geometry. For the same problem a first-order algorithm 
requires a comparatively more dense computational grid than, say, a third-order scheme to capture the 
same characteristics of the flow field. Complex flows involving shock waves, multiple shear layers a n d  
or turbulence require a finer grid to resolve the steep gradients in the flow variables. The size of the 
computational model in terms of element and node counts will also increase with increasing 
complexity of the flow field. For general flow domains with complex surface geometry more points are 
needed to accurately represent the shape of the domain boundary segments. All these situations give 
rise to the need for better CFD algorithms. These algorithms should attempt to reduce the use of 
computer resources such as in-core memory while increasing the accuracy of the algorithm and the 
capability to solve larger problems. 

The primitive variable segregated approach is a conceptually attractive algorithm for subsonic flows. 
The basic idea of this algorithm is to sequentially solve for the velocity and pressure on either 
staggered or non-staggered grids. In this case the intermediate velocity (u*)  is determined from the 
momentum equations, and the pressure (p) or pressure correction variable 07’) is calculated from an 

* Formerly with Pratt & Whitney Aircraft, West Palm Beach, FL, U.S.A. 
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equation that is generally obtained by substituting a discretized form of the momentum equation into 
the continuity equation. This equation is usually Laplacian-like and enforces the conservation of mass. 
Once the p’-variable is updated, it is used to calculate the correction velocity (u ’ )  which is then used to 
correct the u*-components. The finite volume community was the first to propose this algorithm 
methodology and refers to it as the SIMPLEKIMPLER approach.Is2 

Adaptation of the SIMPLEEIMPLER approach to finite elements offers an easy and direct means of 
simultaneously increasing the accuracy of the solution and the capability to model a complex 
geometry. The manner in which the pressure or pressure correction equation is formed circumvents the 
Brabuska-Brezzi compatibility conditions so that equal-order interpolation can be used.3 Furthermore, 
this pressure-based approach lends itself to iterative solvers instead of the Gaussian-type solvers 
typically utilized in the classical Galerkin finite element approaches. This change alone results in a 
substantial increase in the speed and accuracy in comparison with the classical m e t h ~ d . ~  

Segregated finite element algorithms have proven to be a direct extension of the SIMPLE/SIMPLER 
technology. Benim and Zinser’ developed such an algorithm based on the SIMPLE technique using 
two different types of elements. The first was the four-noded element with an additional centre node so 
that the velocity was interpolated bilinearly and the pressure was assumed constant throughout each 
element. The other element used was a ‘composite’ element in which four quadrilateral elements were 
grouped together. The velocity was still assumed to be bilinear within each element while the pressure 
field was assumed to be bilinear over the entire group of elements. Advection effects were modelled 
using modified weighting The final finite element form of the momentum equations used to 
directly calculate the u*-velocity was obtained through integration by parts of both the diffusion and 
pressure gradient terms7 As for the p’-equation, relationships between u’-components and p’ were 
derived from the discretized form of the momentum equations. These relationships were then directly 
inserted into the divergence form of the continuity equation. The resulting form of the p’-equation 
came out to be Laplacian-like. 

The next SIMPLE-like finite element algorithm was reported by Shaw.* The element used in this 
work was a quadrilateral element with bilinear interpolation for both the velocity and pressure. 
The numerically diffuse quadrature scheme of Hughes was used to model the advection effects.’ 
However, in calculating u*, this algorithm did not invoke integration by parts on the pressure gradient 
terms in the momentum equations. This new discretized form of the momentum equations was 
then used to develop the relationships between the velocity and pressure correction terms, namely 
u’-components and p‘, respectively. These expressions were inserted into a different form of 
the continuity equation which was obtained using integration by parts. The resulting form of 
the p’-equation in this case was also Laplacian-like and was shown to give rise to a symmetric 
positive definite stiffness matrix. The author reported a slow convergence rate of the p’-equation, 
a characteristic that is typically associated with the SIMPLE algorithms using finite volume 
techniques. 

The development of a SIMPLER-type approach has been reported by Rice and Schnipke. l o  Their 
work utilized a quadrilateral element with equal-order interpolation for the velocity and pressure. 
Advection effects were modelled using a monotone streamline upwind technique. I I The finite element 
form of the momentum equations used to calculate u* was obtained by invoking integration by parts on 
only the diffusion terms. The absence of u’ and p’ correction variables for SIMPLER-type algorithms 
led the authors to develop relationships between the u*-components and the p-variable from the 
discretized momentum equations. These expressions were used along with integration by parts on the 
continuity equation to obtain a true Laplacian-type equation for pressure. Continuity is enforced by 
substituting the pressure field calculated from this equation back into the discretized momentum 
equations, thus completing the correction phase of the algorithm. 
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This current work presents an advanced algorithm based on the reported SIMPLER-type approach. 
Significant improvements have been realized by unprecedentedly adapting the methodology to be used 
with eight-noded quadratic elements using equal-order interpolation for the primitive variables. These 
elements are known to provide an increased accuracy over linear or bilinear elements in existing 
algorithms. The curve-sided feature of the element adds flexibility and accuracy to the modelling of 
non-orthogonal domains. The quadratic representation of the elemental pressure variable also increases 
the rate of convergence for the pressure equation, which in principle will now approach a third-order 
rate of convergence.I2 This feature has the effect of improving the overall convergence rate of the 
algorithm. 

The current study also incorporates a true multiblock logic which allows the proposed algorithm to 
model large problems while minimizing computational resources. The concept of a multiblock scheme 
may generally be viewed as physically breaking up the flow domain into serveral subdomains, solving 
the resulting subproblems, patching up the solution at the interfaces and resolving the problems 
towards convergence. In our approach, however, element contributions from all foreign blocks are 
simultaneously added to the current block being updated. The flow problem in this sense is effectively 
solved as one continuous problem. 

The current multiblock approach differs from the adapting gridding concept but addresses the same 
class of  problem^.'^-'^ For problems where the flow domain is two-dimensional and stationary in its 
totality, both approaches can be attractive from different perspectives. However, the multiblock 
approach is clearly better suited for such engineering problems as rotor/stator interaction. In addition, 
the development of multiblock technology for three-dimensional problems is a direct extension of the 
concepts used to develop two-dimensional multiblock algorithms. 

2. ANALYSIS 

In this section the current algorithm is presented. The starting point for this process consists of stating 
the governing set of equations valid for a flow field that is Newtonian, steady, incompressible, two- 
dimensional and laminar: l7 

continuity 

du  dv - + - = o  ax ay 
x-momentum 

2 iX( :) :( 9 7  du du 
dx ay 

pu-+pv-=--+- p- +- p- 

y-momentum 

: dq(  ;I) ;(;;) dv d v  
pu-+pv-=--+- p- +- - 

ax ay 

where u, v, p ,  p and p are the two velocity components, pressure, density and absolute viscosity 
respectively. Next we define the following group of non-dimensional variables: 

* X  * Y  
x =- )  Y = z l  * P - p  

U pu2 ’ 
p =- * v  v =-)  

L 
* u  u = - 1  

U 
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where U is a reference velocity, L is a reference length and P is a reference pressure. Inserting these 
relations into equations (la-c) will produce the equivalent non-dimensional form of the governing 
equations: 

continuity 

au* dv' 
ax* ay* - + - = o l  

x-momentum 

y-momentum 

where Re is the Reynolds number defined to be LUp\p. Using equations (3a-c), the general form of the 
finite element weighted residual equations can now be written directly (note that the superscript 
asterisks have been dropped in order to simplify the notation): 

continuity 

x-momentum 

Re 

y-momentum 

where Ki is the weighting function and dA" is the differential element area. Integration by parts is now 
performed on the continuity equation and on the diffusion terms in the momentum equations: 

continuity 

x-momentum 

+--I- dA' = - wi-dA'+- W,(Vu .n)d l ,  (Sb) 
Re ' S  w; ( u-+v- au a,) dAe+- 1 j ( a w , a u  -- ,,.au) 

J ap ax ay Re ax ax a~ ay ax 
y-momentum 

where V is the velocity vector, n is the unit normal vector and dl is the differential length. The resulting 
line integrals in equations (Sb,c) are considered natural boundary conditions that can be evaluated on 
boundary regions if Dirichlet-type conditions are not possible. Note that for a fully developed flow 
boundary condition at an exit region these natural boundary conditions are exactly zero, so that no 
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explicit effort has to be made to impose this condition on the momentum equations. As for the line 
integral in equation (5a), the need to evaluate this term at any boundary region depends on the pressure 
specification. In cases where only a pressure 'datum' is used, the integral is evaluated using the most 
current solution. This integral is also evaluated at any boundary where the velocity profile is specified. 

The finite element interpolation expressions of the field variables for the eight-noded element of the 
Serendipity family (Figure 1) can be written in the general form 

Equations (6) and (5b,c) are used to develop the final weighted residual finite element form of the 
momentum equations as follows 

x-momentum 

y-momentum 

(- 1,- 

1 5 2 
w 

X 

Figure 1.  Eight-noded element of Serendipity family. 
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The current form of the advection terms in equations (7a,b) is the traditional form resulting from the 
weighted residual approach. This approach is not desirable because it treats these terms in an 
unrealistic symmetrical manner. Such a representation will cause the algorithm to be driven unstable as 
Re is increased. This behaviour is equivalent to the problems encountered when central differencing is 
applied to the convection terms. Consequently, these terms are replaced with an upwinding scheme 
which is based on a direct streamline approach. The accuracy of the method and details of applying it 
to quadratic elements are given by Hill and Baskharone.I8 The following notation will be used to 
represent the upwinding technique: 

where the subscript (s) refers to values along a streamline. Using these relations and choosing the 
weighting function to be of the same order as the interpolates, the complete finite element form of the 
momentum equations is obtained: 

x-momentum 

y-momentum 

Equations (9a,b) are solved first in the interation sequence. The resulting velocities are referred to as 
the intermediate velocity field. This velocity field has to be corrected by a pressure closure to impose 
the global conservation of mass. 

The pressure equation is developed by substituting a semidiscretized form of the momentum 
equations into the continuity equation (5a): 

x-momentum 

y-momentum 

1 )  

aP if, 
aiiv, + uqvj = - / N, &dAe + S" 

j =  1 ,m 

where a;, is the diagonal coefficient of the global matrix for row i, aq refers to the off-diagonal 
coefficients of the global matrix for row i, m is the total number of positions in row i, and si is a 
source term. Equations (lOa,b) are the discretized form of equations (9a,b) but with the pressure 
gradient in the form given by equations (5b,c). These equations imply that the pressure gradient 
at a given node is known. Next equations (lOa,b) are manipulated to obtain explicit 
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expressions for the nodal velocity components: 

where 

Equations (1 la,b) are now inserted into equation (5a) to obtain the relation 

iC-K,- +- $ - K v -  d A e =  N;(V.n)dl. I%( Z) ?( 2) J 
In order to complete the pressure equation, the pressure gradient is now assumed to be unknown and u^, 
K,,, B, and K ,  are considered to be nodal quantities. The final form is given below: 

Note that the resulting form of the pressure equation is truly Laplacian and will provide a positive 
definite symmetric global matrix. 

In the current algorithm the updated pressure field obtained from equation (12) is used to correct the 
intermediate velocity. The discretized momentum equations obtained from equations (9a,b) are used 
for this final step in the iteration loop. This gives rise to the nodal velocity correction expressions. 

where 6,  is an entry in the global matrix from the momentum equations for pressure. This matrix is 
obtained by integrating the appropriate derivatives of the weighting functions and summing 
contributions over all elements. The use of equations (13a,b) for the velocity correction step is 
attractive, because no matrix inversions are required. 

The general iteration sequence begins by evaluating equations (9a,b) for the intermediate velocity. 
Next equation (12) is evaluated to update the pressure field. The sequence is completed when 
equations (13a,b) are used to correct the intermediate velocity field. 

The efficient use of quadratic elements with this algorithm requires the characteristics of the 
interpolation functions to be adapted to the algorithm. It is desirable that the assembled nodal values 
obtained by integrating the interpolation function associated with a given node over all elements will 
be either all positive or all negative values for internal nodes in the computational domain. There are 
principally two places in the algorithm where the integral of the weighting hnction is used. The first 
place is in the upwinding scheme and the second is in the pressure equation. The sign pattern of the 
assembled nodal values obtained from integration of the quadratic functions will be 'plus', 'minus', 



176 D. L. HILL AND E. A. BASKHARONE 

‘plus’, etc. This characteristic is addressed in the development of the upwinding scheme so that a 
positive definite matrix will always emerge, allowing the global matrix to be solved by iterative 
methods. 

The alternating sign pattern prohibits the use of an iterative solver for the pressure equation. 
An LU decomposition method is used instead.” The symmetric structure of this equation allows 
only half of the bandwidth to be stored. No under relaxation is used for this step or when the 
pressure is updated at the end of an iteration loop. Under relaxation is only used for the calcula- 
tion of the velocity field. 

The basic concept of the multiblock approach is to use a set of finite element models to model a 
single flow path. The resulting composite solution should approach the flow field corresponding to an 
equivalent single finite element model of the entire flow path. Implementation of the proposed 
approach with the current pressure-based algorithm required some modifications to the finite element 
equations. All interface regions are constructed to have a column or row of nodes that are common to 
several blocks (Figure 2) .  The influence of non-active blocks on an active block occurs through these 
nodes. The new nodal momentum equations valid for any of these common nodes can be written in the 
following discretized form: 

x-momentum 

i f  I 

/ = I  ,m /=l,m 

5 

5 

, , , , , , , , \ \ . \ \ \ \ \  
\ \ \ \ \ \  \ \  

, I , , , , , , , , , , , I , , 
, , , , , I , , 
, , 1 , , # 1 1  

\ \ \ . \ \ \ \  \\.\\.,\ \\\\\..\ 
\ \ \ \ \ \ \ \  

- Common nodes between adjoining blocks whose governing 

- A c t i v e  block nodes that  are not e f fected by mult i -block 

@ - Inact ive  block nodes that  have t o  be a l lowed t o  inf luence 

equations are  assembled i n  a manner t o  approximate a single 
block 

approach 

the a c t i v e  block 

Figure 2. Multiblock approach for finite elements 
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y-momentum 

177 

where 

and the superscript primes denote contributions which are obtained from a foreign block. With these 
changes in the momentum equations the definitions of 6 and 8 have to be modified. The new forms of 
these expressions can be written directly from equations (14a,b): 

i f i  

j =  I ,m j = l , k  

i#j 

iti = - c (Uj /  + a!.)v.  B J  - c a:,$. 
j =  1 ,m j = l , k  

The changes necessary for the pressure equation can be written in the discretized form 

i4i 

j = l , m  j =  1 ,k 

where di represents the source term generated from the 6 and 8 integral expressions in equation (12). 
The last step of the algorithm is the correction phase. The required modifications for this step are 

given below: 

j =  I ,m j = l , k  

v .  I - - v.  ^ I  - c (h i  + hi )p j  - hip;. 
j =  1 ,m j =  1 ,k 

Equations (1 4a,b), (1 6), and (1 7a,b) are used to solve for the common nodes between adjoining blocks. 
It is important to note that there are no natural boundary integrals in these expressions, meaning that 
these nodes are always treated as internal nodes. 

The logic required to control the interface transfer of information was developed using a north/ 
south/east/west notation. This notation along with the structured shape of the finite element models 
allowed the development of interface routines that can accommodate arbitrary block interface 
orientations. Once the solution of a region is updated, the calculation and transfer of information as 
input to other surrounding blocks is handled as a postprocessing task. 
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u = parabollc 

zone 2 zone 3 

I La , 

Figure 3. Description of backward-facing step problem La = I ,  Lb = 2, Lc = 1.33, Ld = 8. 

3. RESULTS 

The multiblock algorithm was used to analyse the backward-facing step problem depicted in Figure 3. 
The three blocks shown in this figure have a combined total of 1136 elements. The composite finite 
element model is shown in Figure 4. No-slip boundary conditions are imposed at all solid walls. A 
filly developed velocity profile is fixed at the inlet region. For the exit plane, zero-streamwise velocity 
gradients are assumed and a pressure datum point is arbitrarily given a value of zero. 

The streakline trace for the case of Re = 73 is shown in Figure 5. No discontinuities can be seen at 

I 136 elements 

Figure 4. Combined finite element model for backward-facing step problem 

Figure 5 .  Streakline trace for Re = 73 
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Figure 6 .  Axial development of velocity profiles for Re = 73 

any of the interfaces. The axial development of the velocity field for the same Re is compared with the 
experimental results of Denham and Patrick2' in Figure 6. The reference starting point (Llh = 0) in this 
case coincides with the step. The comparison clearly shows that the multiblock approach predictions 
are very realistic. The differences in the velocity profiles can principally be attributed to the three- 
dimensional effects observed during the experiment. 

The contour plot of pressure is shown in Figure 7. Again there are no sharp discontinuities across 
any interface region. The continuous field shown in this figure is a direct result of the elemental 
quadratic representation of the pressure variable. The pressure field for the current case was carehlly 

Figure 7. Contour plot of pressure for Re = 73. 1, - 1.00 x lo-'; 2, -7.96 x lo-*; 3, -5.87 x lo-'; 4, -3.79 x lo-*; 5, 
-1.70 x lo-'; 6, 3.74 x 7, 2.45 x lo-'; 8, 4.54 x lo-' 
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Figure 8. Change in recirculation zone length as a hnction of Re 

compared with those presented in References 5 ,  10 and 21 in which lower-order interpolation was used 
for the pressure variable. Evidence of a more continuous pressure field was obtained for our case. 
Again the key contributor was the use of higher-order interpolation for pressure. 

The change in the recirculation zone length as a function of Re is shown in Figure 8. As Re is 
increased, the length of the recirculation zone also increases. Examination of this figure reveals that the 
predicted recirculation zone lengths fall within the variations in the reported experimental data. 

The next problem considered is a 90" planar branch problem. This type of geometry has a number of 
applications in the biomedical field. The problem description is given in Figure 9. Two blocks 
comprising a total of 504 finite elements were used to generate the composite finite element model 
shown in Figure 10. The no-slip boundary condition for velocity is imposed at all solid boundaries. 
The inlet region has a fully developed velocity profile. At the exit region, true fully developed flow is 
assumed. The entire exit plane pressure is set to zero and zero-streamwise velocity gradients are 
imposed. Physically speaking, both branches in this problem were supposed to discharge the flow to 
the same back pressure. The difficulty of this bifurcation problem stems from the characteristic that as 
Re is increased, the amount of mass in the principal branching direction is reduced. This means that the 
amount of mass making the turn is decreased as Re is increased. 

The streakline traces for Re = 50, 200 and 400 are shown in Figures 11-13 respectively. Review of 
these traces shows that the recirculation zone size increases with increasing Re. The larger recirculation 
zones restrict the amount of mass flow entering the branch. The variation in recirculation zone length 
with changing Re is compared with the prediction of Hayes et a1.22 in Figure 14. There are noticeable 
differences between the two predictions as Re is increased. The cause of the differences can be traced 
back to the length of the branching ducts used in the calculations. The work of Hayes et al. 
implemented a non-dimensional length of 3 while the current analysis used a non-dimensional length 
of 10. At higher Re the shorter-length duct in Hayes et a1.k case is viewed as a source of inaccuracy 
because it does not allow the flow field to develop naturally. Instead the flow field must fictitiously 
adjust itself to satisfy the hlly developed flow constraints at the exit stations. The shorter-length duct 
would be numerically acceptable if the branching duct width were reduced. The cited work proves this 
fact by presenting the variation in recirculation zone length as a function of Re for cases in which the 
duct width is 0.75 and 0.5 of the primary duct width. The shapes of the curves for these two cases 
follow the same trends presented for the current analysis using equal duct width magnitudes. 

Figure 15 compares the pressure distribution at Re = 200 for the proposed multiblock approach and 
the classical Galerkin approach using mixed interpolation and a single finite element model (Figure 
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L b =  10 

Figure 9. Description of 90" bifurcation problem. La = 1,2 Lb = 10,2 Lc = 3 

10). Both formulations were based on the same streamline upwinding technique. The comparison 
demonstrates the differences in the pressure field that will result when higher-order pressure 
interpolation is used. The critical region of the flow path (upstream from the turn) is clearly different. 
The multi block approach prediction shows steeper gradients near the branch of the duct. The predicted 
recirculation zone lengths for these two cases did not differ by more than 2%. 

4. CONCLUSIONS 

A multiblock segregated equal-order finite element algorithm has been developed for the eight-noded 
element of the Serendipity family. This quadratic element was used primarily because it has a three- 
dimensional equivalent. Development of the basic algorithm and its extension into a multiblock 
approach are both provided. A number of validation test cases were selected and compared with 
existing experimental and analytical data. Perhaps the most promising finding of the current work is 
the total lack of discontinuities across the block interface boundaries for each of the different test cases. 
The analysis of the backward-facing step problem demonstrated the accuracy of the scheme through 
comparison with experimental data. The 90" bifurcation analysis showed that the current method is 
able to predict the correct physical trends for bibrcating flow. The study also showed the 
improvements in the pressure field that will result with a quadratic representation. It is believed that the 
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Figure 10. Composite finite element model of flow path 

Re = 50 

Figure 11.  Streakline trace for Re = 50 
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Figure 12. 

I 

Streakline trace for Re 200 

Re=400 

Figure 13. Streakline trace for Re = 400 
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Hayes 01 01. 
calculation 

Figure 14. Variation in recirculation zone length with changing Re 

ra t ic  P r e s w e  Field ar  Pressure Field 

1 6.72 E-02 
2 1.49 E-01 
3 2.31 E-01 
4 3.14 E-01 
5 3.96 E-01 
6 4.79 E-01 
7 5.61 E-01 
8 6.44 E-01 
9 7.26 E-01 

10 8.09 E-01 

Figure 15. Comparison of pressure field for elements using quadratic and linear interpolation functions for pressure 

proposed algorithm is the first true multiblock approach that does not use the ’patching’ approximation 
of overlapping finite element blocks. 
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